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Abstract: Earthquakes are a natural phenomena, which induce natural hazard that seriously threatens 20 
urban areas, despite significant advances in retrofitting urban buildings and enhancing the knowledge 21 
and ability of experts in natural disaster control. Iran is one of the most seismically active countries in 22 
the world. The purpose of this study was to evaluate and analyze the extent of earthquake 23 
vulnerability in relation to demographic, environmental, and physical criteria. An earthquake risk 24 
assessment (ERA) map was created by using a Fuzzy-Analytic Hierarchy Process coupled with an 25 
Artificial Neural Networks (FAHP-ANN) model generating five vulnerability classes. Combining the 26 
application of a FAHP-ANN with a geographic information system (GIS) enabled to assign weights to 27 
the layers of the earthquake vulnerability criteria. The model was applied to Sanandaj City in Iran, 28 
located in the seismically active Sanandaj-Sirjan zone which is frequently affected by devastating 29 
earthquakes. The Multilayer Perceptron (MLP) model was implemented in the IDRISI software and 30 
250 points were validated for grades 0 and 1. The validation process revealed that the proposed model 31 
can produce an earthquake probability map with an accuracy of 95%. A comparison of the results 32 
attained by using a FAHP, AHP and MLP model shows that the hybrid FAHP-ANN model proved 33 
flexible and reliable when generating the ERA map. The FAHP-ANN model accurately identified the 34 
highest earthquake vulnerability in densely populated areas with dilapidated building infrastructure. 35 
The findings of this study are useful for decision makers with a scientific basis to develop earthquake 36 
risk management strategies. 37 
 38 
Keywords: Earthquake hazard, Vulnerability, Risk assessment, FAHP-ANN, GIS, Iran. 39 

 40 
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1. Introduction 41 

 42 

In the 20th century, earthquake disasters have caused casualties of close to 2 million people worldwide 43 

(Doocy et al., 2013). The purpose of urban planning is to drastically reduce effects caused by natural 44 

disasters and enhance safety (Cruz-Milán et al., 2016). In developing countries however uncontrolled 45 

development, poor planning choices, design issues and structural failure have impeded progress to 46 

equip humanity with measures against the complex challenges posed by earthquakes (Ghafory-47 

Ashtiany, 2009; Xu et al., 2010; Zhang and Jia, 2010). 48 

 49 

Earthquakes have caused considerable economic damage and loss of lives (Guha-Sapir et al., 2011). 50 

In Iran more than one million casualties have been recorded since 1900 (Asef and Kessmati, 2005; 51 

Zebardast, 2013), and more than 180 thousand individuals during the past 5 decades (Omidvar et al., 52 

2012). Iran has one of the worst recorded earthquake vulnerability indices in the world, defined as the 53 

degree of damage inflicted upon a property at risk of earthquakes of different magnitudes (see Barbat 54 

et al., 2010; Coburn and Spence, 2006; Ghajari et al., 2017, 2018; Karashima et al., 2014; Karimzadeh 55 

et al., 2014; Omidvar et al., 2012; Wei et al., 2017).  56 

 57 

Iran suffers from frequent destructive earthquakes due to its location in the active collision zone 58 

between the Eurasian and Arabian plates (Asef, 2008; Aghamohhamdi et al. 2013; Zebardast, 2013) 59 

causing severe damage (Ghodrati -Amiri et al., 2003; Aghamohammadi et al., 2013; Ibrion et al., 60 

2015; Moradi et al., 2015; Ranjbar et al., 2017), as captured in historical records and information from 61 

the earthquake database of the United States Geological Survey (USGS) (Zafarani et al., 2009; 62 

Asadzadeh et al., 2014; Najafi et al., 2015; Bahadori et al., 2017). According to Zamani et al. (2011) 63 

and Panahi et al. (2014), the Iranian plateau with its flanking seismic zones is characterized by 64 

different types of active faults, tectonic domains, recent volcanoes and high surface elevation 65 

following the Alpine Himalaya seismic belt. Forty-six earthquakes occurred here between 1900 and 66 

2014 that directly caused casualties (Berberian, 2005, 2014; the ISC and IGUT databases). 67 

 68 

The development of earthquake risk assessment (ERA) methodologies has been studied extensively 69 

but rarely have measures been studied for ERA in urban zones. Davidson and Shah (1997) for 70 

instance introduced the Earthquake Disaster Risk Index (EDRI) to estimate urban risk, accounting for 71 

seismic hazards and vulnerability. In addition to this holistic approach, there are many other studies 72 

assessing specific aspects of risk using various methods such as social fragility and lack of resilience 73 

in seismic risk in urban areas (Jaramillo et al. (2016). 74 

 75 

So far, researchers have investigated different aspects of ERA at different scales using various 76 

approaches including GIS-based techniques (Rashed and Weeks, 2002; Sun et al., 2008; Alparslan et 77 
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al. 2008; Hashemi and Alesheikh,  2011; Villagra et al. 2014; Rahman et al., 2015; Karimzadeh et al., 78 

2017; Alizadeh et al., 2018 a, b; Ningthoujam and Nanda 2018), high-resolution QuickBird Imagery 79 

(Fu et al., 2007), GIS modelling using satellite remote sensing and digital elevation model (DEM) 80 

data (Liu et al., 2012; Xu, 2015), GIS-based Support vector machine modelling (SVM) (Xu et al., 81 

2012), statistical analysis (Ghassemi, 2016), GIS-based statistical analysis (Hassanzadeh, 2019), 82 

catastrophe progression method (Zhang et al., 2017), Artificial Neural Network (ANN) Models 83 

(Tavakoli and Ghafory-Ashtiany, 1999; Panakkat and Adeli, 2007; Kulachi et al., 2009; Vicente  et al. 84 

2011; Akhoondzadeh, et al., 2019), ANN models integrated with an Analytic Network Process (ANP) 85 

(e.g., Alizadeh et al. 2018a), Analytical Hierarchy Process (AHP) (Bitarafan  et al., 2013; Robat Mili 86 

et al., 2018), an integrated model of AHP in GIS (Bahadori et al., 2017), an integrated ANN–AHP 87 

model (Jena et al., 2019), fuzzy logic techniques (Lamarre & Dong, 1986; Wadia-Fascetti & Gunes, 88 

2000; Ahumada et al., 2015), and fuzzy multi-criteria decision making (FMCDM) (Ranjbar and 89 

Nekooei, 2018). Our study is the first to ask how an integrated FAHP combined with an ANN model 90 

can improve ERA accuracy by generating a classification of vulnerability zones to improve 91 

earthquake vulnerability planning in Iran. 92 

 93 

In the aforementioned studies, ‘expert systems’ have become an important tool for solve complex 94 

problem solving and decision-making. The application of expert systems extends to almost all 95 

engineering fields and uses artificial intelligent theories (e.g., Neural Network, Fuzzy Logic) to 96 

develop expertise and propose conclusions (Jackson, 1998; Liao, 2005). Because of this several 97 

researchers have considered the Fuzzy approach in ERA as effective for spatial decision making (refer 98 

to Sanchez-Silva and Garcia, 2001, Şen, 2010; Ahumada et al., 2015; Hu et al., 2018; Rezaei-Malek et 99 

al., 2019). 100 

 101 

Here we focus, on the case of Sanandaj, the capital city of Kurdistan province in Iran that is located in 102 

a major earthquake zone near the active faults of Sanandaj-Sirjan, Morvarid, and Nahavand, with the 103 

closest fault being only 3 km away from the city. Zagros fault includes numerous cases of active 104 

faulting (refer to Mirzaei et al., 1999; Hessami et al., 2003; Bachmanov et al., 2004). These faults 105 

generate earthquake magnitudes between level 1.6 and 6.9 on the Richter scale (Ghodrati-Amiri et al., 106 

2009). Estimating the seismic site amplification of Sanandaj is required to predict the likelihood of 107 

future earthquakes (Mohajjel and Fergusson, 2000; Allen et al., 2011), and so is calculating its 108 

vulnerability and earthquake-related risks (Azami et al., 2015; Karimi and Boussauw, 2018). 109 

 110 

The remainder of this paper is organized as follows: The above-mentioned contributions to knowledge 111 

and justification of the study are highlighted by conducting a comprehensive literature review in 112 

Section 2. An overview of the research methodology is presented in Sections 3. Section 4 provides the 113 

results. Finally, Section 5 presents the discussion, conclusions and future research directions. 114 
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2. Background and related works on ERA 115 

 116 
In this section, we give a brief overview of fuzzy methods, multi-criteria decision making (MCDM) 117 

approaches and algorithms that have been applied for ERA. To better control results of vulnerability 118 

evaluations and parameters, researchers proposed MCDM (e.g., Samadi Alinia and Delavar, 2011; 119 

Moradi et al., 2015; Peng, 2015; Bahadori et al., 2017). The FAHP-ANN model is a specific type of 120 

MCDM approach that has not yet been comprehensively applied in urban vulnerability assessments 121 

for earthquakes. Studies in related fields however are summarized as follows. 122 

 123 

Many researchers have integrated MCDM approaches in GIS environments as effective tools for 124 

spatial decision making around earthquake hazards (Erden and Karaman, 2012; Feizizadeh and 125 

Blaschke, 2012; Karimzadeh et al., 2014; Delavar et al., 2015; Rezaie and Panahi, 2015; Feizizadeh 126 

and Kienberger, 2017; Sánchez-Lozano et al., 2017; Hooshangi and Alesheikh, 2018; Nyimbili  et al., 127 

2018; Skilodimou, et al., 2019; Nazmfar, 2019). 128 

 129 

Ranjbar and Nekooie (2018) recently adopted the improved fuzzy multi criteria decision-making 130 

(FMCDM) approach in a GIS environment to identify buildings endangered by earthquakes. They 131 

focussed on detecting buildings prone to earthquakes in Tehran, one of the most vulnerable seismic 132 

regions in Iran (JICA, 2000). Seismic vulnerability assessments are highly important for earthquake 133 

risk mitigation programmes. A similar study was conducted by Ningthoujam and Nanda (2018) who 134 

used a GIS system to perform an Earthquake Vulnerability Assessment of buildings in Imphal city, 135 

India. The authors used the GIS platform to generate and display various thematic maps. Their study 136 

identified areas under risk of great damage to structure and human beings in the case of an earthquake 137 

to inform local disaster management plans. 138 

 139 

The advantage of using ANN in the FAHP-ANN model is that it can describe nonlinear and complex 140 

interactions among system variables and work with imprecise data. These strengths of an ANN are 141 

emerging as a powerful tool for modelling (Ramakrishnan et al., 2008). ANN can generate easy-to-142 

use models that are accurate even for complex natural systems with large inputs (Jahnavi, 2017). It 143 

thereby allows generating computational models to evaluate earthquake vulnerability accounting for 144 

uncertainty, which is an inherent property of the ‘earthquake phenomena’ (Tavakoli and Ghafory-145 

Ashtiany, 1999; Vicente et al. 2011).  146 

In order to determine the need for an in-depth investigation of earthquake vulnerability scenarios in 147 

urban areas, Alizadeh et al. (2018a) identified and evaluated quantitative earthquake vulnerability 148 

indicators for generating a vulnerability map by constructing Artificial Neural Network (ANN) and 149 

Analytic Network Process (ANP) models. Bahadori et al. (2017) researched ERA, disaster 150 

management and seismic vulnerability assessments, while Robat Mili et al. (2018) considered AHP 151 

https://scholar.google.com/citations?user=KlFjZgwAAAAJ&hl=en&oi=sra
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utilizing GIS as an integrated model to estimate the safety of urban building materials and residential 152 

buildings with earthquake risk mitigation and disaster risk reduction in mind. The results depict the 153 

safety level of different urban zones depending on their hazards and earthquake vulnerability. 154 

 155 
Although recent works propose a large variety of indicators to measure ERA relating to demographic, 156 

environmental, physical, and economic dimensions of a city (refer to Ainuddin and Routray, 2012; 157 

Villagra et al., 2014; González et al., 2018; Atrachali et al., 2019), this is an ongoing task. 158 

Recommendations depend on the methodology and the different scales of the study (Zhou et al., 159 

2010). Amini-Hosseini et al. (2009) for instance recommended using socio-economic and physical 160 

parameters to quantify the seismic vulnerability of Tehran, Iran. Notably, in that case effective 161 

parameters of the model and their weights were constructed by accounting for local conditions and 162 

judgments by Iranian experts (Robat Mili et al., 2018). Bahadori et al. (2017) considered physical, 163 

social, and economic aspects for vulnerability assessments and earthquake hazard assessments (EHA). 164 

 165 

Karimzadeh et al. (2017) used a GIS-based hybrid site condition map to assess earthquake building 166 

damage in Iran. They identified a hybrid model (the Karmania Hazard Model) using the single 167 

parameter of earthquake wave velocity. For the top 30 m (Vs30) this gives a better estimation than a 168 

topography-based model. Novel GIS-based approaches to earthquake damage zone modelling using 169 

satellite remote sensing and DEM data have been addressed by Liu et al. (2012) for Wenchuan 170 

County in the Sichuan Province, China. The resulting earthquake damage map revealed potential for 171 

current and future damage (hazard). 172 

 173 

Hassanzadeh et al. (2013) modelled earthquake scenarios interactively by focusing on the Karmania 174 

Hazard Model. This model has been applied to Kerman City, South East of Iran. The authors found 175 

GIS-based scenario development useful for earthquake disaster management during all stages of an 176 

earthquake, namely, before, during and after the occurrence. Rahman et al. (2015) addressed 177 

vulnerability to earthquakes and fire hazards using GIS for Dhaka city, Bangladesh. The major 178 

finding was that vulnerability assessments of earthquakes and fire hazards corresponded well with 179 

social aspects of vulnerability. 180 

 181 

Alizadeh et al. (2018a) developed a Hybrid Analytic Network Process and Artificial Neural Network 182 

(ANP-ANN) Model on urban earthquake vulnerability in a case study in Tabriz city, Iran. The study 183 

identified the most vulnerable zones which are clustered in several zones in Tabriz. More recently, 184 

Jena et al. (2019) assessed environmental indicators, seismic indicators and vulnerability indicators 185 

for constructing an ERA map. An integrated model using ANN–AHP is developed for constructing 186 

the ERA map in Banda Aceh, Indonesia. The proposed hybrid model was adopted to evaluate urban 187 

population risk due to impending earthquakes. 188 

https://www.sciencedirect.com/science/article/pii/S2212420918315115#!
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 189 

Aghataher et al. (2005) noted some important spatial factors affecting vulnerability to earthquakes; in 190 

particular physical vulnerability of urban structures and facilities, and they identified the most 191 

vulnerable areas of Tehran, Iran using a fuzzy-AHP model to specify layer weights through a pairwise 192 

comparison. In a similar study, Silavi et al. (2006) the shortcomings of the fuzzy-AHP model were 193 

overcome by adopting intuitionist fuzzy logic when determining vulnerability, which takes the 194 

indeterminacy of membership functions into account. They also discussed mortality rates of humans 195 

to describe their vulnerability to earthquakes. 196 

 197 

The use of fuzzy logic algebra in structural damage estimation was advocated, in particular because 198 

expert opinion can easily be integrated into this technique (Fischer et al., 2002). Allali et al. (2018) 199 

argued for a methodology based on fuzzy logic for post-earthquake assessments of building damage 200 

to correctly predict level of damage. Rezaei-Malek et al. (2019) introduced a study for prioritizing 201 

management for disaster-prone areas to prepare for large-scale earthquakes. There, the fuzzy 202 

DEMATEL was applied to specify interrelationships between influential factors, and the weights of 203 

factors were determined through fuzzy ANP. The model aimed to identify special points of demand 204 

that need to be prioritized in case of large-scale earthquakes. An integrated approach of the ANN and 205 

fuzzy model was developed by Nazmfar (2019), to evaluate urban vulnerability to earthquakes with 206 

the aim to construct a vulnerability map as a means to improve safety and to reduce casualties in 207 

Tehran, Iran. 208 

 209 

Our literature review revealed that in spite of the numerous ERA studies; there is a clear gap on 210 

choosing the best parameters for a comprehensive ERA. To address this issue, the potential of FAHP-211 

ANN models needs to be explored for selecting appropriate ERA measures, which is our focus. 212 

Sspecifically , Specifically, in this research we develop a hybrid FAHP-ANN model using GIS 213 

techniques to improve the ERA. This study also extends our perspectives on ERA by including expert 214 

knowledge on the vulnerability of a specific locale as an important reference when constructing 215 

vulnerability maps. To date, there has been little discussion about considering a combination of three 216 

key parameter groups, namely demography, environmental, and physical parameters for an ERA. In 217 

fact, no previous studies have considered these parameters together when building FAHP-ANN 218 

models. Here, we will also fill this gap. 219 

 220 

Generally, this study makes two contributions. First and foremost, it developed a model of ERA in 221 

which critical factors (CFs) were categorized along demography, environmental, and physical 222 

dimensions. Next, it determined the earthquake vulnerability factors of ERA in Sanandaj, Iran, and 223 

revealed their level of importance using FAHP-ANN coupled with GIS analysis. This is the first time 224 

a comprehensive model has been developed for Sanandaj in a detailed ERA. Our ultimate purpose is 225 
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to provide the necessary background to fully convey the requirements of these techniques and to 226 

introduce a flow diagram that outlines the fundamental steps involved in creating the FAHP-ANN 227 

model. 228 

 229 

We propose this approach because we see the following advantages of our technique for ERA and 230 

parameter selection: 231 

 232 

• Applying an FAHP model creates a suitable training database for the Artificial Neural 233 
Network (ANN). The major potential of ANN as a non-linear computational model lies in the 234 
high-speed processing achieved through a massive parallel implementation (Izeboudjen et al. 235 
2014) akin to the structure and function of the human nervous system (Su et al., 2017; Luo et 236 
al., 2019). 237 
 238 

• The proposed hybrid approach allows selecting a set of key factors affecting social, 239 
environmental, and physical criteria prior to ERA in accordance with experts’ opinions and 240 
then sets a weight for each criterion based on its significance. 241 
 242 

• A set of key factors affecting demography, environmental, and physical criteria prior to ERA 243 
and in accordance with experts’ opinions is applied based on their significance (Achu et al., 244 
2020). 245 
 246 

• Selecting suitable training sites is complex but made possible by creating a new FAHP-ANN 247 
model for the ERA while adequately considering all the relationships among the critical 248 
criteria. 249 
 250 

• The utility of the methodology is demonstrated by providing a real case study that shows its 251 
positive management implications on an applied ERA problem. 252 
 253 

• The application of our technique enables to reduce the impact of an earthquake by identifying 254 
categories of the most vulnerable zones. It allows prioritizing ERA for regional-scale 255 
earthquakes in the pre-disaster phase. 256 
 257 

• Overall, the proposed approach underpins the vital role of ERA and considers the 258 
interrelationships among criteria. 259 
 260 
 261 

For the Iranian case study context in particular, the combination of these techniques can accurately 262 

determine vulnerability zones and improve building an Earthquake Vulnerability Map (EVM). The 263 

GIS platform itself was used to classify risk by zones which will aid disaster management 264 

(Lepuschitz, 2015; Cai et al., 2019). 265 

 266 

3. Methods 267 
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3.1 Study area 268 

 269 

The region of Kurdistan in the west of Iran has experienced several majorly destructive earthquakes 270 

(Shabani and Mirzaei, 2007; Ghodrati-Amiri et al., 2009). Sanandaj City in the southern centre of the 271 

Kurdistan Province is surrounded by the Zagros Mountains. The city is located in the structural zone 272 

of Sanandaj-Sirjan and is exposed to earthquakes along the crossings of the Zagros and Marivan-273 

Sirjan faults. (see Fig. 1). The historical earthquake recordings on the Surface-wave magnitude scale 274 

(MS) collected in the surrounding area of Sanandaj up till 2014 are shown in Fig 1. 275 

  276 

 277 

Caption 1: 278 

Please insert Figure 1 here: 279 

 280 

The study area is a watershed located in Kurdistan Province, Iran (see Fig. 2). The watershed lies 281 

between 46° 59′ 32″ E longitude and 35° 18′ 52″ N latitude (Asadi, 2019) and covers an area of 2 906 282 

km2 or 10.3% of the province with a population of, 414 069 (Statistical Center of Iran, 2017; 283 

Murgante, 2017). Its elevation varies between 1368 m and 1720 m above sea level. Slope degree 284 

ranges from 0 to 50%. 285 

Caption 2: 286 

Please insert Figure 2 here: 287 

 288 

 289 

 290 

3.2 Applied FAHP-ANN proposed model for ERA 291 

 292 

The FAHP method allows determining weightings for the evaluation criteria identified by experts in 293 

the field. Mikhailov and Tsvetinov (2004) focussed on the constraints that have to be considered 294 

within the FAHP.  FAHP represents reality more so than AHP (Khashei-Siuki et al., 2020). 295 

 296 

The ANN is a computational model that captures non-linear associations among variables in input and 297 

output datasets. It relies on a learning route of training and calibration, and estimates values for output 298 

variables from input data (Antanasijevi´c et al., 2013; Nedic et al., 2014). 299 

 300 

https://www-sciencedirect-com.ezproxy.utm.my/science/article/pii/S2352801X1930339X#bib20
https://www-sciencedirect-com.ezproxy.utm.my/science/article/pii/S2352801X1930339X#!
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Our literature review confirmed that there is no study that uses FAHP-ANN for a performance 301 

assessment of an ERA and the effect of 11 13 critical factors (derived from literature and experts’ 302 

opinion) on the overall performance. 303 

 304 

The key criterion for the selection of our experts was a high-level understanding and overview of the 305 

field. Specifically, the selection of the experts was based on their known (national, regional, 306 

municipal) status in the area of seismology in the Sanandaj district, reflecting their professional 307 

activities on seismology and in risk assessment. 308 

 309 

As mentioned in Table 1, 11 13 indicators associated with ERA in Sanandaj City were presented to 310 

academic staff of the department of geography, geology and urban planning (Kurdistan’s University) 311 

who were chosen as experts for this study. Interviews were conducted face-to-face, via questionnaire, 312 

or by using online video tools (e.g., Skype), or by telephone. The experts were asked to rank the 313 

importance and relevance of the selected earthquake indicators associated with urban vulnerability to 314 

earthquakes affecting Sanandaj City (Kurttila et al., 2000). In total, 45 experts were interviewed to 315 

investigate their opinions regarding key factors that influence earthquake risk. 316 

A model for ERA was developed according to a FAHP-ANN. This section describes the different 317 

components of the proposed model, in particular its architecture. The model consists of two basic 318 

steps combining the FAHP and ANN methodologies. The steps involved in this process are (1) the 319 

data acquisition and the creation of vulnerability classes; (2) transferring of layers to the IDRISI 320 

software, (3) establishing the theoretical background of the methods, (4) FAHP model development, 321 

(5) the ANN implementation for ERA and (6) the application of the results as described below. Fig. 3 322 

presents the methodological flowchart. 323 

 324 
Overall, the development of a hybrid FAHP-ANN model involves a number of stages. The main 325 

flowchart in Fig. 3 shows the series of fundamental steps involved in the ERA. 326 

 327 

 328 

 329 

Caption 3: 330 

Please insert Figure 3 here: 331 

 332 

 333 

 334 

 335 

 336 

 337 
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3.3 Data acquisition and creation of vulnerability classes 338 

For an ERA, data can be retrieved from various sources. Freely available earthquake data can be 339 

collected from several public and private agencies. These sources are accessible from the internet and 340 

include the Advanced National Seismic System, the United States Geological Survey (USGS), and the 341 

Department of Road and Urbanity (Kurdistan Province). Further DEM 30 m Landsat data 342 

(http://www.std2800.ir/); data from the Iranian Geological organization (https://www.usgs.gov/), the 343 

municipality of Sanandaj City (https://gsi.ir; http://www.Sanandaj.ir/), and the Census Center of Iran 344 

(http://www.amar.org.ir/). 345 

To effectively utilize a comprehensive evaluation method for an ERA, it is necessary to incorporate 346 

important vulnerability criteria (Table 1). The study area was classified based on three main criteria 347 

sets to generate five different vulnerability classes by adopting the manual classifier method. For the 348 

classification the following criteria stored in spatial layers were used (Fig. 3): social criteria 349 

demographic data (population density, and family density), environmental data (distance from the 350 

runway, distance from a fault, slope, elevation, geology), and physical data (presence of buildings 351 

with quality materials, buildings with no quality materials, distance from the road network, building 352 

area, number of floors, land use). To calculate distance, a Euclidean function with a cell size of 30 m 353 

(pixel size 30*30) was applied in ArcGIS desktop 10.4. To calculate slope, a Digital Elevation Model 354 

(DEM) (generated from contours on 1:25,000 topographical maps) was used, and the classification 355 

was based on the percentage. Accordingly, all thirteen layers (including both quantitative and 356 

qualitative data) (see Table 1) were converted to a raster format in ArcGIS using the feature-to-raster, 357 

vector-to-raster and/or polygon-to-raster tools. Geographical coordinates of the project area were 358 

set in WGS 84 Datum UTM zone 38 N. 359 

 360 

 361 

Caption 4: 362 

Please insert Table 1 here: 363 

3.4. Transferring Layers to the IDRISI Software 364 

Here, the standardized layers as per previous step were transferred to the IDRISI environment. 365 

Considering the similar extent of all layers was now critical and so a raster calculator was used to 366 

display layers similarly. Using the ENVI format all the maps of identical extents were then entered 367 

into the IDRISI software. 368 

 369 

Since the measurement units and scales of each vulnerability layer were unique, the layer values were 370 

standardized between 0 and 1, by building a matrix of pairwise comparisons based on the maximum 371 

and minimum layers method in IDRISI and by using the MAP Algebra command. Fig. 4 shows the 372 

standardized input layers derived from the GIS procedure. The layers were weighted to acknowledge 373 

http://www.std2800.ir/
https://gsi.ir/
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their relative importance in assessing earthquake hazard vulnerability; namely, as very high, high, 374 

moderate, low or very low. Afterwards, a GIS analysis was undertaken to explore how well the 375 

system performs in terms of zoning for an ERA. 376 

 377 

 378 

 379 

Caption 5: 380 

 Please insert Figure 4 here: 381 

 382 

 383 

3.5. Theoretical background of methods 384 

The AHP model is created by a mathematical language that describes the decision process (Ding, 385 

2018). The AHP method is a reliable technique to determine the weight of criteria in multi-criteria 386 

decision making (Yang and Xu, 2016). The F-AHP model was developed to solve hierarchical 387 

problems (a weakness of the AHP) in which the decision maker can specify preferences about the 388 

importance of each criterion (Yaghoobi, 2018). The purpose of using the AHP model in this study 389 

was to weight the criteria and to map the F-AHP model. 390 

Using ANNs can provide a way to predict the output of input data not used in the modeling process 391 

(Khawaja et al., 2018). The ANN is useful for processing input information of units by considering 392 

weight, threshold and mathematical transfer functions, and processes input units relative to other units 393 

(Gopal, 2016). Therefore, ANN is capable of displaying maps that categorize vulnerability into 394 

individual zones with high potential for forecasting. That makes the ANN successful in describing the 395 

spatial heterogeneity of the earth's surface (Gopal, 2016). We will provide more detail on ANNs in 396 

chapter section 3.7. 397 

Shortcomings of ANNs for creating multi-criteria decision making models (Ebrahimi et al., 2016; 398 

Nallusamy, 2015; Alizadeh, 2018c) are overcome by using a hybrid FAHP-ANN model based on 399 

natural, physical and demographic data relevant for an ERA. 400 

 401 

 402 

 403 

3.6 F-AHP model development 404 

The F-AHP model for MCDM helps evaluating qualitative and quantitative attributes for ranking 405 

alternatives and finding solutions from possible alternatives. Ranking alternatives and defining 406 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ding%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=30326615
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gopal%2C+Sucharita
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gopal%2C+Sucharita
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weights of criteria is attempted by using crisp numbers based on expert opinions (Singh and 407 

Benyoucef, 2011). However, the issue is that human judgment is imprecise and crisp numbers in this 408 

case are not suitable for ranking alternatives and defining weights of criteria. To manage the 409 

uncertainty of human judgments, the fuzzy set theory was integrated into MCDM which was coined 410 

FMCDM. Here we discuss the theories underpinning fuzzy set theory as deployed in this study. 411 

 412 

Fuzzy MCDM was used primarily as it overcomes some of the uncertainties relating to MCDM. 413 

Uncertainty arises in an MCDM problem around weighting evaluation criteria and subsequently, 414 

around crisp input data for decision making. The first type of uncertainty may arise during decision 415 

making because of the varying interests, expertise and backgrounds of experts (Chen and Chang, 416 

2010). The second type may originate where data are transformed into numerical values. A fuzzy 417 

concept prevents such problems (Jun et al., 2013). 418 

 419 

When applying a fuzzy concept, alternative weight decision making is determined through a set of 420 

numerical calculations.  421 

Alternative weights are calculated only by the information provided in the decision matrix for each 422 

criterion by applying a fuzzy concept. The best alternative is obtained by the affected weight vector in 423 

the decision matrix (Zoraghi et al., 2013).  Then each alternative is calculated by means of a double 424 

comparison matrix, and the relative weight of each element must be multiplied by the high weight 425 

elements to replace the final weight for ranking. A final score will be calculated for each alternative 426 

using the following equation: 427 

 428 

 429 

 430 

 431 
 432 
 433 

Wk is a preference coefficient for the criterion Wi and k is the preference coefficient of subset i and gij 434 

is the score criterion of subset i (Zhang, 2016). 435 

 436 

The λmax must be equal to n so consistency is met (refer to equation 2). Using the Consistency Index 437 

(CI) of the relation enables this computation (Saaty, 1980; Neaupane and Piantanakulchai, 2006; Stein 438 

and Norita, 2009; Zabihi et al., 2015): 439 

 440 

 441 

𝑃𝑃𝑃𝑃 = �.
n

k=1

�Wk   Wi  (gij

m

i=1

) 
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 442 

∁𝐼𝐼 = γ𝑚𝑚𝑚𝑚𝑚𝑚−1
𝑛𝑛−1

          (2) 443 

 444 
 445 

In this way, the inconsistency ratio (CR) of CI is given by:  446 

Where; 447 

 λmax value is an important validating parameter in ANP and is used as a reference index to screen 448 

information by calculating the Consistency Ration (CR) of the estimated vector. Additionally, λmax is 449 

the largest eignvalue of a given matrix. Our study analyzed the information from the experts' through 450 

an eigenvalue method to identify the higher risk factors. RI is the random consistency index, which 451 

depends on the matrix size. The CR should fall below 0.1, (equation 3), indicating that the degree of 452 

consistency of the pairwise comparison matrix is acceptable (Saaty 1980; Chang et al., 2007; Niu et 453 

al., 2019; Kumar et al., 2019). 454 

 455 

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶
𝑅𝑅𝐶𝐶

  If ≤ 0.1  𝐶𝐶𝐶𝐶= 0.0021≤ 0.1    (3) 456 

 457 

 458 

Fuzzy set theory was primarily introduced by Zadeh (1965) to deal with uncertainty due to 459 

imprecision and vagueness (Yuksel and Dagdeviren, 2010). The fuzzy set theory is based on the logic 460 

that the degree of the membership of each element can be calculated in such a way that the 461 

membership degree of each element in the fuzzy set is defined spectrally among the data between [0, 462 

1] (Ayag and Ozdemir, 2009; Biswas, 2018). The basic steps of FAHP can be given as follows:  463 

 464 

Step 1. Choose the linguistic ratings for criteria and alternatives with respect to criteria. In this step, 465 

the importance weights of the evaluation criteria and the ratings of alternatives are considered as 466 

linguistic terms to assess alternatives in a fuzzy environment (for more information refer to Zhang et 467 

al., 2018; Wątróbski et al., 2018). In addition, a fuzzy linguistic set was developed for the risk 468 

assessment of the ERA. The model can transform expert assessments into numerical values through a 469 

triangular fuzzy number. 470 

 471 

The evaluation process involves fuzzy factors, and is therefore referred to as a fuzzy synthetic 472 

evaluation. The key to determining the fuzzy relation is to determine the degree of membership 473 

between each factor. This involves ascertaining the quantitative relationship between the evaluation 474 

https://www.sciencedirect.com/science/article/pii/S0970389618304610#%21
https://www.researchgate.net/profile/Tarun_Biswas4
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factors and therefore the corresponding function to measure the degree of membership is called a 475 

membership function. 476 

 477 

Step 2. Determine the degree of membership and development of the fuzzy evaluation matrix for a 478 

single factor. 479 

 480 

Step 3. Determine the index weight which can be derived from the AHP. The 1–9 scale method 481 

generates a judgement matrix from the 13 selected indicators, as suggested by Saaty (1990). 482 

 483 

Step 4. Comprehensive evaluation. Assume that the number of criteria is n and the count of 484 

alternatives is m, the fuzzy decision matrix of a single factor will be obtained with m rows 485 

and n columns. After constructing the fuzzy decision matrix, the first level of comprehensive 486 

evaluation vectors can be obtained with their corresponding weights. 487 

 488 

Fig. 5 illustrates the triangular phase from the smallest to the most promising value with (a, b, c) and 489 

its membership function (Rodcha et al., 2019). The triangular membership function is used to 490 

demonstrate the relative strength of the fuzzy matrices' elements (Wicaksono et al., 2020). 491 

Additionally, the Triangular Fuzzy Number (TFN) is used, which can handle the fuzziness and 492 

enhance reliability (Wu et al., 2019). Fuzzy decision-making based on fuzzy sets theory is the 493 

technique of choice for decision making problems as human thought is fuzzy. Meanwhile TFN or 494 

fuzzy linguistics have been widely utilized in fuzzy decision-making (Benítez et al., 2007; Cabrerizo 495 

et al., 2009; Chen and Li, 2011). 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

Caption 6: 509 

Please insert Figure 5 here: 510 

 511  

https://www.tandfonline.com/doi/full/10.1080/19475705.2018.1445664
https://www.mdpi.com/search?authors=Rujee%20Rodcha&orcid=0000-0003-4486-7813
https://www-sciencedirect-com.ezproxy.utm.my/topics/engineering/fuzziness
https://www-sciencedirect-com.ezproxy.utm.my/topics/computer-science/fuzzy-set-theory
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 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

AHP in spite of its popularity and frequent usage in multi criteria decision analysis (MCDA) is not 527 

sufficient to eliminate uncertainty in data (Wątróbski et al., 2018; Rodcha et al., 2019). Crisp pairwise 528 

comparisons in the conventional AHP are insufficient to capture expert judgments adequately (Taha 529 

and Rostam, 2012). Moreover, F-AHP models are more powerful to handle real-world problems 530 

whereas traditional AHP does not handle such problems (Moktadir et al., 2018). 531 

 532 
While conventional AHP is not effective for ambiguous problems, FAHP as an extension of AHP 533 

using fuzzy set theory manages uncertainty and therefore overcomes this limitation. It therefore 534 

addresses the fuzziness of decision makers’ opinions (Nilashi et al., 2016). Chang's extent analysis 535 

method is more suitable for this study (Chang, 1992, 1996) because of its ease of use compared to the 536 

other FAHP approaches. 537 

 538 

 539 

3.7 ANN implementation for ERA 540 

 541 

Artificial Neural Networks (ANN) (Islam et al., 1995; Sözen et al., 2005) computes useful models for 542 

ERA by accounting for the uncertainty inherent to earthquake scenarios. ANN systems process 543 

μ (𝑥𝑥) =  

⎩
⎪⎪
⎨

⎪⎪
⎧

0    𝑥𝑥 < 𝑎𝑎
(𝑥𝑥 − 𝑎𝑎 )
(𝑏𝑏 − 𝑎𝑎 )

  𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏

                  𝑏𝑏 ≤  𝑥𝑥  ≤ 𝑐𝑐
(𝑑𝑑 − 𝑥𝑥)
(𝑑𝑑 − 𝑐𝑐)   𝑐𝑐 ≤ 𝑥𝑥 ≤ 𝑑𝑑𝑐𝑐
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   (5) 
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⎨
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⎧

0   𝑥𝑥 < 𝑎𝑎
(𝑥𝑥 − 𝑎𝑎 )
(𝑏𝑏 − 𝑎𝑎 )

 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
.

(𝑐𝑐 − 𝑥𝑥)
(𝑐𝑐 − 𝑏𝑏)  𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐
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information of interconnected units that respond to inputs of weights, thresholds, and mathematical 544 

transfer functions (Islam et al., 1995). ANN also has advantages over statistical methods (Zhang et al. 545 

(1998)). Each unit processes input from other units and passes on the signals. Non-linear modelling 546 

with fast processing and high accuracy can be achieved that way (Pradhan and Lee, 2010a; Yilmaz, 547 

2009, 2010; Dou et al. 2015; Lee et al. 2016), which is useful when analysing big data with many 548 

different alternatives and to examine complicated patterns that cannot be solved otherwise (Sözen et 549 

al., 2005; Sözen, 2009). Furthermore, ANN provides reliably handles noisy, uncertain and incomplete 550 

data (Midilli et al., 2007; Sözen et al., 2007). Therefore, ANN is efficient at producing vulnerability 551 

maps arising from complex interactions with high accuracy. However; it needs training to achieve that 552 

using an appropriate choice of training algorithm parameters and an adequate network architecture 553 

(Safa and Samarasinghe, 2011; Sözen, 2009). These two features of the network are regrettably not 554 

well defined. Trial and error procedures may help (Karapidakis, 2007; Kankal et al., 2011). Still, the 555 

accuracy of the ANN method outcompetes other methods (Lynch et al., 2001). 556 

 557 

ANN units are known as nodes. Information is processed along the network from input to output unit 558 

akin to neural networks (Zamani et al., 2013; Abiodun et al., 2018).  559 

 560 

To determine the ANN model structure the number of layers, nodes in each layer and their 561 

connections need to be known (Maier et al., 2010). The general structures of ANN models is 562 

described in numerous publications (e.g., Hagan et al., 1996; Jiang, 2001) and relies upon ‘training’ 563 

the ANN so that it can precisely predict the system performance under different conditions (Najafi et 564 

al., 2009). The architectures of the ANN models are shown in Fig. 6. 565 

 566 

Caption 7: 567 

 Please insert Figure 6 here: 568 

 569 

 570 

 571 

 572 

 573 

n: the hidden layer occurs at the output of two outputs: 574 

1- Synaptic Weight Summing, which represents system memory. 575 

2- Activation function that calculates the amount of activation of neurons. k output neurons, wki    576 
synaptic weight in terms of input i. 577 

𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 = ∑ wki   
𝑛𝑛
𝑖𝑖=1 xi        

 

out𝑘𝑘   = f (𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘)              

(6) 

 

(7) 

 

 

https://www-sciencedirect-com.ezproxy.utm.my/science/article/pii/S1364815213003198#bib91
https://www-sciencedirect-com.ezproxy.utm.my/science/article/pii/S0301479713001679#bib12
https://www-sciencedirect-com.ezproxy.utm.my/science/article/pii/S0301479713001679#bib18
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Finally, it can be noted that ANN converts input information into output (Nedic, 2014). Many 578 

researchers applied the ANN as a powerful tool for analysis in varied contexts, such as for example 579 

traffic noise pollution (e.g., Bravo-Moncayo et al., 2016; Mansourkhaki et al., 2018), landslide 580 

susceptibility (Benchelha et al., 2019; Arabameri et al., 2019), flood forecasting (Kim and Newman, 581 

2019; Goodarzi et al., 2019), and seismic hazard (Sharma and Arora, 2005; Gul and Guneri, 2016; 582 

Plaza et al., 2019; Huang et al., 2019). 583 

Multilayer perceptron (MLP) is flexible, popular, and simple and versatile form of ANN (Ahmed et 584 

al., 2015). MLP can model highly non-linear functions, and when trained, accurately predicts even 585 

using new data. It consists of an input and output layer, and one or more hidden layers (Fig. 7) (Roy et 586 

al., 1993). The hidden layers enhance the network’s ability to model complex functions (Paola and 587 

Schowengerdt, 1995). Each layer consists of neurons that process information independently, and that 588 

are linked to neurons in other layers through the weight. Input (factors) and output (responses) vectors 589 

are influenced by assigning the weight and biased values (Alkhasawneh et al. 2013). 590 

 591 

Adjusting the weights between the neurons without a learning algorithm is difficult. The back-592 

propagation learning algorithm with momentum used in this study reduces the error rate between the 593 

actual output and the neural network output. A feed-forward back-propagating (BP) MLP was used 594 

with a feed-forward phase in which the external input information is propagated forward to calculate 595 

the output information signal, and a backward stage in which modifications to the connection 596 

strengths are accomplished based depending on the observed and computed information signals at the 597 

output units (He et al., 2011). 598 

Caption 8: 599 

Please insert Figure 7 here: 600 

 601 

In MLP models, all the input nodes are in one layer and the hidden layer is distributed as one or more 602 

hidden layers. Fig. 7 shows the general structure of a simple feed-forward network. In order to reduce 603 

the error, the back propagation algorithm will be used in the present study (Salarian et al., 2014). The 604 

output signal is obtained from the following relations: 605 

 606 

 607 

When wi  is a weight vector, the function f (net) is an active transfer function 608 

 609 

0= f (net) = f (∑ 𝑤𝑤𝑖𝑖 𝑛𝑛
𝑗𝑗=1  𝑥𝑥𝑖𝑖 )                  (8) 

 

 net = 𝑤𝑤T x =  w1 x1 +  … . wn xn         (9) 
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 610 

 611 

As such, Where T is a transfer matrix; the output value zero is given by Abraham (2005): 612 
 613 

   614 

 615 

 616 

Where, θ is called the threshold level; and this type of node is called a linear threshold unit. 617 

The weights of criteria derived from the AHP are presented in Table 2. 618 

 619 

Caption 9: 620 

Please insert Table 2 here: 621 

 622 

The MLP in this study was trained with a back-propagation algorithm; the most frequently used 623 

neural network method (Fig. 8). The MLP with the back-propagation algorithm was trained using 624 

exemplary sets of input and output values (Pradhan and Lee 2010b). 625 

 626 

 627 

Caption 10: 628 

Please insert Figure 8 here: 629 
 630 
 631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
3.7.1 Neural network training and testing 640 
 641 
A “training set” and a “test set” are required to establish the ANN architecture. To develop possible 642 

network weights, the former is applied so the performance of the trained network can be properly 643 

ascertained. Data need to be prepared to create an accurate probability map. The selection of 644 

acceptable criteria is critical for this (Nedic et al., 2014; Alizadeh et al., 2018a). We used complete 645 

earthquake data from the USGS site across various magnitudes for this purpose. However, even a 646 

(10) 

 

 

0= f (net) =                                        
1  if   wT X      

0   other wise 
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great amount of data may be insufficient for modelling and circumvent this issue the model needed to 647 

be trained. The 13 spatial layers from the identified earthquake indicators were then used in the 648 

earthquake probability mapping adopting a trial and-error approach (Nedic et al., 2014). Judging by 649 

their importance the initial 13 layers were reduced by those that were deemed unnecessary for the 650 

analysis. The ranking of layers and weights was analyzed by using the ANN. 651 

 652 

 653 

3.7.2 Applying FAHP for the Training Site 654 

 655 

In order to implement the MLP model, we need two training datasets and a test to analyze the model 656 

and select a precise training network (Aghazadeh et al., 2017). Since data lacked we trained the ANN. 657 

For this purpose the FAHP model was created to generate a suitable training database. The 658 

combination of these two methods solved the complex problem of selecting suitable training sets for 659 

the ERA, and adequately considered all the relationships among the earthquake indicators. Seventy 660 

percent of those indicators with the highest weight resulting from the AHP model (Table 2) were 661 

transferred to ArcGIS to create the base map (Figure 10) while 500 points were selected randomly 662 

from the base map to produce a final training site map. These were input in the feed-forward 663 

Multilayer Perceptron (MLP) model, and also to measure the accuracy of the trained network. 664 

we have proposed a new method to select training points by combining the F-AHP model and ANN. 665 

Finally the FAHP output was classified into five categories of very high, high, medium, low and very 666 

low earthquake vulnerability. This map was then converted into a network of 500 randomly selected 667 

point sites.  668 

 669 

 670 

3.7.3 Transferring Layers to IDRISI Software 671 

After being standardized, the obtained training map along with the 13-layer map were transferred to 672 

the IDRISI software as the input and of neural network after converting the format as explained in the 673 

next section.  674 

After standardizing the 13 vulnerability criteria layers in the study and generating one layer of training 675 

points, a total of 13 raster layers with a cell size of 30 m (pixel size 30*30) were output in ENVI 676 

format using ArcGIS 10.4. The IDRISI software environment was prepared for use in the ANN MLP 677 

model. All the GIS operations were performed using Idrisi Kilimanjaro software (Eastman, 2006). 678 

The neural network was trained in IDRISI Kilimanjaro (Clark Labs), using a highly popular 679 

supervised method known as multi-layer perceptron (MLP), run in hard classification mode. The MLP 680 

classifier is based on the back-propagation algorithm (Haykin, 1999). Furthermore, in order to classify 681 

earthquake zones on the map, we applied the ANNs classifier of the IDRISI Kilimanjaro software 682 

http://jad.shahroodut.ac.ir/?_action=article&au=16116&_au=M.++Aghazadeh
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(Eastman, 2006). Since the IDRISI software works with raster layers all polygon-based vector format 683 

layers had to be converted to create the final map. 684 

In the next phase, all raster layers were exported into the IDRISI software, and we performed the 685 

analysis steps needed for the AHP model using the weight tool. At this stage, the relative importance 686 

of criteria in relation to their importance in the process of modernization priorities will be performed 687 

based on expert opinions and their relative importance of criteria in the weighting matrix. 688 

 689 

3.7.4 Implementing the MLP Neural Network Model 690 

The aim of the ANN computing is to build a new model of the data generating process so that it can 691 

generalize and predict outputs from inputs (Atkinson and Tatnall, 1997). If the model result is larger 692 

than the threshold, the Percepron output is 1 otherwise the output is -1. Our model had 13 input 693 

variables in the input layer, 1 hidden layer including 8 neurons, and 5 output layers. This model 694 

outcompeted other models based on the highest R2 and lowest RMSE, indicating that predicted and 695 

actual indices are closely aligned. 696 

 697 
The numbers of nodes of the hidden layers were calculated by the following equation (Eastman, 698 
2009): 699 

 700 

 701 

In Equ.11, Nh is the hidden layer, Ni the input layer and N0 the output layer. Table 3 illustrates the 702 

amount and manner of entry of effective parameters in the model implementation process. 703 

The raster map that resulted from the FAHP-ANN method was converted to a vector format in the 704 

GIS environment, and finally the dissolve function was administered to calculate earthquake 705 

vulnerability of Sanandaj City (Table 4). Sanandaj was broadly classified into five zones, namely, 706 

very high, high, moderate, low, and very low classes describing the likelihood of future earthquakes. 707 

 708 

Caption 11: 709 

Please insert Table 3 here: 710 

 711 

 712 

4. Results 713 

Nh = INT ( �Ni ×  N0             (11) 

 

 

https://www-sciencedirect-com.ezproxy.utm.my/science/article/pii/S0098300410003158#bib18
https://www-sciencedirect-com.ezproxy.utm.my/topics/earth-and-planetary-sciences/modernization
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In Fig. 9 we present the earthquake vulnerability maps based on the 13 earthquake vulnerability 714 

criteria using different modelling techniques for the map production. We present three different maps 715 

here as they were needed to validate the results, as described in the next section. Sanandaj City has 716 

been broadly classified into the five vulnerability zones. All maps show that the zones of increased 717 

vulnerability are mainly situated in the urban areas of Sanandaj City which is in accordance with 718 

historical earthquake observations (Karimi, Boussauw, 2018). 719 

 720 

Caption 12: 721 

Please insert Figs. 9 here: 722 

 723 

Zones 1 and 2 are the high-risk zones for future earthquakes in Sanandaj. The earthquake prone zones 724 

are located in the vicinity of the active faults of Morvarid, Nahavand and Sanandaj-Sirjan, the latest 725 

being the closest fault at a 3 km distance from the city. 726 

Most parts of the city are located in low and medium vulnerability classes. Highly vulnerable areas 727 

are distributed among Zone 1 and 2 of the city. The highest seismic vulnerability occurring in Zone 1 728 

is due to the higher number of buildings in this district as this is the oldest part of Sanandaj. Also, in 729 

Zone 1, population numbers are the greatest, which increases the chance for human casualties in case 730 

of an earthquake. The most prevalent type of housing structure in the city of Sanandaj is masonry 731 

brick, decreasing in building height from Zone 1, 3, to 2. Over 60% of the buildings in Zone 1 and 2 732 

are made of masonry bricks, mostly constructed without considering seismic regulations. 733 

Reconstructing buildings in these areas based on careful planning is necessary in the future, especially 734 

as there are few high-quality steel and concrete buildings; and where they exist they are of a low-735 

quality construction, not adhering to building codes which needs to be addressed in the future. The 736 

validity of the results is supported by previous studies by Alizadeh et al. (2018a), Umar et al. (2014) 737 

and finally Jena et al. (in press) who also presented earthquake vulnerability maps. Our hybrid 738 

framework delivered useful results to evaluate a city’s vulnerability dimensions, and to inform 739 

preparedness strategies in the future. 740 

 741 
4.1 Validation 742 

The overall aim of the FAHP-ANN model was to make sure that a trained ANN model works without 743 

known flaws and can be confidently used. Validation of the results was examined by converting the 744 

vulnerability map to a probability map (refer to Mohammady et al., 2012; Pradhan et al., 2014; 745 

Tehrany et al., 2014; Aghdam et al., 2016; Tien Bui et al., 2016b; Fanos and Pradhan, 2019). The 746 

trained earthquake probability map was presented with five different classes to recognize various 747 

zones of probability, as shown in Fig. 10.  748 
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 749 

In this section, two validations were used that are effective in assessing the sensitivity of models to 750 

earthquake vulnerability. First, by analyzing the degree of consistency between the maps obtained 751 

from the FAHP, AHP and FMLP hybrid models. These were evaluated according to the validation 752 

points selected from the five F-AHP map classes (see Fig. 10). Subsequently, we randomly compared 753 

a number of points in the high-vulnerability spectrum on the FAHP hybrid model and the FMLP 754 

hybrid model where the points on both maps are in common spectra. In the next phase of validation, 755 

the receiver operating characteristic (ROC) curve was used to evaluate the sensitivity of the models to 756 

seismic vulnerability (Yariyan et al., 2019). Fig. 11 depicts that the curve can show a comprehensive 757 

relationship between the true positive value (TPR) and the false positive value (FPR) for seismic 758 

vulnerability. In this curve, the AUC is a measure of the accuracy of the susceptibility to seismic 759 

vulnerability. The area under the curve (AUCs) shows that more accurate pixels represent the scene 760 

than inaccurate pixels. According to the results, the FMLP hybrid model has good accuracy 761 

amounting to a value of 0.930. If the AUC is equal to 1, it indicates perfect prediction accuracy 762 

(Pradhan and Lee 2010c).  763 

 764 

The MLP model results in a hard and soft classification. In the classification the resulting map, each 765 

pixel belongs to a specific class. The value of the sigmoid function was introduced in Eq. 8, 9, and 10. 766 

Also, an ideal accuracy of 95% was introduced to stop the operation if 90% accuracy was observed in 767 

the output. 768 

An AUC value of >0.8 indicates that the performance of the model is good (Chen et al., 2017, Tien 769 

Bui et al., 2016b; Tien Bui et al., 2016c). The result of the combined F-AHP model and the FMLP 770 

combination model in the study area is presented in Fig. 10. 771 

 772 

 773 

 774 

Caption 13: 775 

Please insert Figure 10 here: 776 

 777 

 778 

Averaging all ROC curves and comparing TPR with FPR generates an optimum threshold which at its 779 

best will produce a saliency map with maximum sensitivity and minimum fall out rate. Calculated 780 

AUC values from the ROC curves are presented among the results in Fig. 11. 781 

 782 

Caption 14: 783 
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Please insert Figure 11 here: 784 

 785 

 786 

 787 

According to Fig. 11, the receiver operating characteristic (ROC) curve was used to evaluate and 788 

compare the classification models (Bradley 1997). As a graphical plot ROC shows the performance of 789 

a binary classifier system while the discrimination threshold is varied (Bradley 1997). The sensitivity 790 

or true positive rate (TPR) is defined as the percentage of seismic records which are correctly 791 

identified in terms of seismicity. As plotted in Fig. 11, sensitivity, which is also called the true 792 

positive rate (TPR), and the false positive rate (FPR), that was obtained for Sanandaj City were on 793 

average 0.93 and 0.07, respectively. Thus each time we call it a positive; there is a 7% probability that 794 

we obtain this specific probability of being wrong. The graphical representation of accuracy is 795 

presented in Fig. 11. 796 

 797 

4.2 The amount of vulnerability based on population and area 798 

 799 

In order to more accurately understand what is affected by an earthquake in terms of area and 800 

population, it is necessary to calculate the percentage of that.  801 

Sanandaj City population data per municipality zone was used for assessing the impact of the 802 

population vulnerability (PV) in various zones of Sanandaj City, as illustrated in Fig 12. 803 

This information is highly relevant for informing crisis management. Fig. 12 shows the steps for 804 

calculating the ‘amount’ of vulnerability by applying the population and area software functions of 805 

ArcGIS 10.4. 806 

 807 

 808 

Caption 15: 809 

Please insert Figure 12 here: 810 

 811 

 812 

The details of population in risk, vulnerability classes, area, and corresponding percentages are 813 
presented in Table 4. 814 

Caption 16: 815 
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Please insert Table 4 here: 816 

 817 

As can be seen in Table 4, the greatest percentage of land was classed as high risk covering 28.28% of 818 

the city. In addition, as can be seen in Table 4, 25.39% of the city was under very high risk. High, 819 

moderate, low, and very low-risk zones represent 28.28%, 22%, 12.88%, and 11.45% of the total area, 820 

respectively.  821 

 822 

5. Discussion and conclusions 823 

 824 

In this research, a novel hybrid model of FAHP-ANN was developed for earthquake risk assessments 825 

(ERA), in the context of a case study of Sanandaj City, Iran. The modelling was coupled with a GIS-826 

based spatial analysis useful for the regional scale. A literature review helped in identifying 827 

earthquake vulnerability criteria incorporating knowledge about demographic, environmental and 828 

physical criteria. These in conjunction with historical earthquake data enabled us to produce an 829 

earthquake risk map for the city. The ANN method helped determine earthquake probability 830 

measurements, while the AHP method helped with the weight calculation of the parameters for the 831 

earthquake vulnerability assessment. The ranks and weights were assigned by experts in the field. 832 

Given that the root mean square error (RMSE) was very low, the ANN model has a high chance for 833 

correct interpretation. 834 

 835 

The geological earthquake vulnerability criteria, forming part of the environmental criteria, had the 836 

highest impact on the earthquake probability assessment in Sanandaj. whereas demographic factors 837 

contributed the most for the vulnerability assessment of Sanandaj. However, the importance of 838 

different criteria varied in different zones of Sanandaj. The highest risk zones were clustered in the 839 

northern part (Zone 1) of the city. The other parts were exposed to low-to-moderate earthquake risk. 840 

Developmental infrastructure plans show that the city is expanding towards the South with various 841 

schools, universities, and informal settlements located in the vicinity of the fault. Growing towards the 842 

fault may cause serious problems for the city in the future. If the same planning and building mistakes 843 

made in Zone 1 are repeated here where the natural risk is increased due to the proximity to the fault, 844 

many people and structures will be at great danger. The highest population density coincides with 845 

building density in zones 1, 2 in very highly vulnerable zones for earthquakes. Government offices 846 

and the main transportation junctions here are under great threat and earthquakes here could quickly 847 

impact on all areas of the city as they depend on the critical services provided in these zones. This 848 

demonstrates that local earthquake effect have wide-spread repercussions for the city as a whole. 849 

 850 

It is obvious from these results that Sanandaj City urgently requires a reassessment of the strategies 851 

for managing natural disasters, not the least because the 2017-2018 earthquakes showcased serious 852 
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consequences. Appropriate policies are needed to manage the city and inform decision-makers on 853 

vulnerability factors and the unique deficiencies of each zone and the locations where to prioritise. 854 

Zone 3 for instance is not yet as vulnerable and priorities may need to be given to Zone 1 to reassess 855 

existing structures and relief plans addressing the high population density. However with planned 856 

expansions to Zone 3, forward planning is needed to avoid issues prevalent in Zone 1. The critical 857 

condition of buildings and high population density in high risk zones should be closely monitored by 858 

the government, and programs of risk reduction be improved. Lack of managing more even 859 

population distributions across the city and poor city development planning are the main issues to 860 

address to proactively manage risk in the future. 861 

 862 

This study aimed at developing a user-friendly geographic information system (GIS) tool coupled 863 

with a novel FAHP-ANN model that provides an effective and practical estimation of ERA. This 864 

technique can become an important tool for city planning, thereby confronting crises resulting from 865 

future earthquake incidences. This is supported by related works of Nazmfar (2019), Ningthoujam and 866 

Nanda (2018), Moradi et al. (2015), Zamani et al. (2013) and Sarris et al. (2010). The hybrid FAHP-867 

ANN model filled spatial gaps in a map that are now fully covered because of using a combination of 868 

three main earthquake vulnerability criteria groups including demographic, environmental and 869 

physical criteria (Cardona et al., 2012; Pelling and Wisner, 2012). By comparing the F-AHP and F-870 

MLP maps, the final map of the F-AHP is derived from the AHP weight. Interestingly, The F-AHP 871 

map pinpoints precisely the same areas as highly vulnerable. This is reflected in the FMLP model, 872 

which indicates a high accuracy in weighting, and in the selection of training points, and in the 873 

implementation of the ANN. 874 

 875 

The major drawback of the FAHP-ANN technique is the time-consuming model development and 876 

implementation because the ANN training requires a large amount of training data (Dahmani et al., 877 

2014). The key limitations specific to our study situation included a lack of high-quality infrastructure 878 

data and long processing times. 879 

 880 

The developed hybrid framework of the FAHP-ANN model is easily replicable elsewhere for urban 881 

management. Hence, future scenarios may include the application of artificial intelligence technique 882 

or a 3D city model. Future research also should concentrate on the use of more intelligent analysis 883 

such as back-propagation neural networks, probabilistic neural networks, supervised associating 884 

networks, multi-layer perceptron neural network architectures, genetic algorithms, support vector 885 

machine and multi-layer neural networks. Neural networks will provide a better performance in 886 

tackling diverse and complex challenges of life. In the future, more attention should be afforded to 887 

conducting research for ERA and multi-criteria analysis using the predication and accuracy 888 

algorithms for incremental updates. Accordingly, in our future work we will focus on evaluating our 889 
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technique for ERA on large multi-criteria datasets to show how it can overcome the scalability 890 

drawback of traditional and multi-criteria analysis.  891 

 892 

Finally, the integration of the FAHP-ANN and GIS applications for earthquakes serves as a 893 

framework that has potential application in other disaster contexts such as extreme geological, 894 

hydrological and meteorological events with devastating effects for landscapes, humans and 895 

infrastructures. 896 

 897 

 898 
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Fig. 1. Earthquakes in a 150 km radius around Sanandaj City between 1920 and 2014 (Institute of 
Geophysics University of Tehran, IGUT. http://irsc.ut.ac.ir). 
 
 
 

 

Fig. 2. The case study area’s geographical location (Sanandaj City, Iran). 
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Fig. 3. Conceptual framework of the ERA based on a hybrid FAHP-ANN model. 

 

 

 

 

 

 

Table 1. Criteria selected for an earthquake vulnerability assessment of Sanandaj City. 
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Caption 5: 1847 

Data sources: Department of road and Urbanity (Kurdistan Province). http://www.std2800.ir/, 2. DEM 30 m 
Landsat.  https://www.usgs.gov/, 3. Iranian Geological organization. https://gsi.ir/, 4. The municipality of 
Sanandaj City. http://www.Sanandaj.ir, 5. Census Center of Iran. http://www.amar.org.ir/. 
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Fig. 4. Standardized vulnerability criteria layers used for building the FAHP-
ANN as part of an earthquake risk assessment for Sanandaj City, Iran. 
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Fig. 7.  ANN Multilayer perceptron (MLP) (Sušanj et al., 2016). 
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Table 2. The importance of the criteria used in the MLP neural network. 

Layer Criterion 

        a. Distance from the runway 
        b. Distance from the fault   
        c. Slope 
        d. Elevation 
        e. Geology 

 
 

AHP Final weight 

Environmental 0.36 

Physical 

 F. Building with quality materials 
 g. Building with no quality materials  
 h. Distance from the communication network 
  i. Building area 
  j. Number of floors 
  k. Land use 

 

Social 
l. Population density 
m. Family density  

 

0.47 

0.17 



52 
 

 1982 
Caption 10: 1983 

 1984 

 1985 

 1986 

 1987 

 1988 

 1989 

 1990 

 1991 

 1992 

 1993 

 1994 

 1995 

 1996 

 1997 

 1998 

 1999 

 2000 

 2001 

 2002 

 2003 

 2004 

 2005 

 2006 

 2007 

 2008 

 2009 

. 

. 

. 

. 

. 

. 

Earthquake 
Vulnerability 

Map 

Environmental 

 

a 

b 

 c 

 d 

 e 

 
f 

 g 

 h 

 i 

 j 

 k 

 
l 

 m 

 

Physical 

 

Demography 

 

Fig. 8. Artificial Neural Network MLP architecture used in this study. 
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Table 3. Input parameters for implementing the MLP model. 

Application type 

 

Classification 

 

Parameters 

 
Avg. training pixels per class 

Avg. training pixels per class 

500 

500 
Input specifications 

 

Network topology 

 

Hidden layers 

Nodes 

Input Layers Node 

Output Layer 

 

1 

8 

13 

5 

 

Training parameters 

 

Automatic training dynamic 

Dynamic learning rate 

Start learning rate 

End learning rate 

Momentum factor 

Yes 

Yes 

0.001 

0.0056 

0 5 

Stopping criteria 

 

RMSE 

Iterations 

Accuracy rate 

0.1455 

10000 

95 
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Figs. 9. Earthquake vulnerability of Sanandaj City, Iran, according to three different 
models: (a) analytical hierarchy process (AHP), (b) fuzzy-AHP (F-AHP), and (c) Hybrid 
Model F- Multilayer Perceptron (F-MLP). 
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Fig. 10. Comparison of the performance of two susceptible seismic vulnerability points (training site) in Sanandaj City 
in Iran. (a) the combined F-AHP model; (b) the F-MLP combination model. 
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Fig. 11. Curve specifications (ROC) to demonstrate the success of the analytical model. 
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Fig. 12. The process of calculating population vulnerability. 
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 2193 Table 4. Sanandaj City’s vulnerability to earthquake based on population at risk, and affected number of 
families and area 

Vulnerability class Population at risk Number of Families Area (m 2)  

Very High 

High 

Moderate 

Low 

Very Low 

15415 

45162 

75592 

67818 

130846 

4596 

13772 

22513 

21322 

41564 

10728300 

11949800 

9297200 

5445600 

4837900 

 

Percentage 

25.39 

28.28 

22 

12.88 

11.45 


